lunes, 2 de junio de 2008

FENÓMENOS ELECTROSTÁTICOS

Electrización
Cuando a un cuerpo se le dota de propiedades eléctricas se dice que ha sido electrizado. La electrización por frotamiento permitió, a través de unas cuantas experiencias fundamentales y de una interpretación de las mismas cada vez más completa, sentar las bases de lo que se entiende por electrostática.

Si una barra de ámbar (de caucho o de plástico) se frota con un paño de lana, se electriza. Lo mismo sucede si una varilla de vidrio se frota con un paño de seda. Aun cuando ambas varillas pueden atraer objetos ligeros, como hilos o trocitos de papel, la propiedad eléctrica adquirida por frotamiento no es equivalente en ambos casos. Así, puede observarse que dos barras de ámbar electrizadas se repelen entre sí, y lo mismo sucede en el caso de que ambas sean de vidrio. Sin embargo, la barra de ámbar es capaz de atraer a la de vidrio y viceversa.

Este tipo de experiencias llevaron a W. Gilbert (1544-1603) a distinguir, por primera vez, entre la electricidad que adquiere el vidrio y la que adquiere el ámbar. Posteriormente Franklin al tratar de explicar los fenómenos eléctricos consideró la electricidad como un fluido sutil, llamó a la electricidad «vítrea» de Gilbert electricidad positiva (+) y a la «resinosa» electricidad negativa (-). Las experiencias de electrización pusieron de manifiesto que:

Cargas eléctricas de distinto signo se atraen y cargas eléctricas de igual signo se repelen.

Una experiencia sencilla sirvió de apoyo a Franklin para avanzar en la descripción de la carga eléctrica como propiedad de la materia. Cuando se frota la barra de vidrio con el paño de seda, se observa que tanto una como otra se electrizan ejerciendo por separado fuerzas de diferente signo sobre un tercer cuerpo cargado. Pero si una vez efectuada la electrización se envuelve la barra con el paño de seda, no se aprecia fuerza alguna sobre el cuerpo anterior. Ello indica que a pesar de estar electrizadas sus partes, el conjunto paño-barra se comporta como si no lo estuviera, manteniendo una neutralidad eléctrica.

Este fenómeno fue interpretado por Franklin introduciendo el principio de conservación de la carga, según el cual cuando un cuerpo es electrizado por otro, la cantidad de electricidad que recibe uno de los cuerpos es igual a la que cede el otro, pero en conjunto no hay producción neta de carga. En términos de cargas positivas y negativas ello significa que la aparición de una carga negativa en el vidrio va acompañada de otra positiva de igual magnitud en el paño de lana o viceversa, de modo que la suma de ambas es cero.

Cuando un cuerpo cargado eléctricamente se pone en contacto con otro inicialmente neutro, puede transmitirle sus propiedades eléctricas. Este tipo de electrización denominada por contacto se caracteriza porque es permanente y se produce tras un reparto de carga eléctrica que se efectúa en una proporción que depende de la geometría de los cuerpos y de su composición. Existe, no obstante, la posibilidad de electrizar un cuerpo neutro mediante otro cargado sin ponerlo en contacto con él. Se trata, en este caso, de una electrización a distancia o por influencia. Si el cuerpo cargado lo está positivamente la parte del cuerpo neutro más próximo se cargará con electricidad negativa y la opuesta con electricidad positiva. La formación de estas dos regiones o polos de características eléctricas opuestas hace que a la electrización por influencia se la denomine también polarización eléctrica. A diferencia de la anterior este tipo de electrización es transitoria y dura mientras el cuerpo cargado se mantenga suficientemente próximo al neutro.

La naturaleza eléctrica de la materia
La teoría atómica moderna explica el por qué de los fenómenos de electrización y hace de la carga eléctrica una propiedad fundamental de la materia en todas sus formas. Un átomo de cualquier sustancia está constituido, en esencia, por una región central o núcleo y una envoltura externa formada por electrones.

El núcleo está formado por dos tipos de partículas, los protones, dotados de carga eléctrica positiva, y los neutrones, sin carga eléctrica aunque con una masa semejante a la del protón. Tanto unos como otros se hallan unidos entre sí por efecto de unas fuerzas mucho más intensas que las de la repulsión electrostática -las fuerzas nucleares- formando un todo compacto. Su carga total es positiva debido a la presencia de los protones.

Los electrones son partículas mucho más ligeras que los protones y tienen carga eléctrica negativa. La carga de un electrón es igual en magnitud, aunque de signo contrario, a la de un protón. Las fuerzas eléctricas atractivas que experimentan los electrones respecto del núcleo hace que éstos se muevan en torno a él en una situación que podría ser comparada, en una primera aproximación, a la de los planetas girando en torno al Sol por efecto, en este caso de la atracción gravitatoria. El número de electrones en un átomo es igual al de protones de su núcleo correspondiente, de ahí que en conjunto y a pesar de estar formado por partículas con carga, el átomo completo resulte eléctricamente neutro.

Aunque los electrones se encuentran ligados al núcleo por fuerzas de naturaleza eléctrica, en algunos tipos de átomos les resulta sencillo liberarse de ellas. Cuando un electrón logra escapar de dicha influencia, el átomo correspondiente pierde la neutralidad eléctrica y se convierte en un ion positivo, al poseer un número de protones superior al de electrones. Lo contrario sucede cuando un electrón adicional es incorporado a un átomo neutro. Entonces el ion formado es negativo.

La electrización por frotamiento se explica del siguiente modo. Por efecto de la fricción, los electrones externos de los átomos del paño de lana son liberados y cedidos a la barra de ámbar, con lo cual ésta queda cargada negativamente y aquél positivamente. En términos análogos puede explicarse la electrización del vidrio por la seda. En cualquiera de estos fenómenos se pierden o se ganan electrones, pero el número de electrones cedidos por uno de los cuerpos en contacto es igual al número de electrones aceptado por el otro, de ahí que en conjunto no hay producción ni destrucción de carga eléctrica. Esta es la explicación, desde la teoría atómica, del principio de conservación de la carga eléctrica formulado por Franklin con anterioridad a dicha teoría sobre la base de observaciones sencillas.

La electrización por contacto es considerada como la consecuencia de un flujo de cargas negativas de un cuerpo a otro. Si el cuerpo cargado es positivo es porque sus correspondientes átomos poseen un defecto de electrones, que se verá en parte compensado por la aportación del cuerpo neutro cuando ambos entran en contacto, El resultado final es que el cuerpo cargado se hace menos positivo y el neutro adquiere carga eléctrica positiva. Aun cuando en realidad se hayan transferido electrones del cuerpo neutro al cargado positivamente, todo sucede como si el segundo hubiese cedido parte de su carga positiva al primero. En el caso de que el cuerpo cargado inicialmente sea negativo, la transferencia de carga negativa de uno a otro corresponde, en este caso, a una cesión de electrones.

La electrización por influencia es un efecto de las fuerzas eléctricas. Debido a que éstas se ejercen a distancia, un cuerpo cargado positivamente en las proximidades de otro neutro atraerá hacia sí a las cargas negativas, con lo que la región próxima queda cargada negativamente. Si el cuerpo cargado es negativo entonces el efecto de repulsión sobre los electrones atómicos convertirá esa zona en positiva. En ambos casos, la separación de cargas inducida por las fuerzas eléctricas es transitoria y desaparece cuando el agente responsable se aleja suficientemente del cuerpo neutro.

La carga del electrón (o del protón) constituye el valor mínimo e indivisible de cantidad de electricidad. Es, por tanto, la carga elemental y por ello constituye una unidad natural de cantidad de electricidad. Cualquier otra carga equivaldrá a un número entero de veces la carga del electrón. El coulomb es la unidad de carga eléctrica en el Sistema Internacional y equivale a 6,27 · 10^18 veces la carga del electrón (e-), es decir:

1 C = 6,27 · 10^18 e-